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Ve consider the interaction of an infinite plane with an infinite vortex 

filament passing through the origin of coordinates normal to the plane. 

As a physical model of the problem under consideration we may con- 

sider a plate pierced by a slender rotating rod of great length. If the 

plane is absent, the fluid motion is determined by the laws 

CO vq = - 
r ’ 

p=p -PC,2 
03 29 

where v+ is the tangential component of the velocity vector, pm the 

pressure at an infinite distance from the vortex filament. The vertical 

and radial components of velocity vz and vr will vanish. 

Friction of the stream at the plane leads to secondary flow, the study 

of which is of interest in connection with the hydrodynamic processes in 

vertical or cyclonic combustion chambers. The problem may also be of 

interest for dynamic meteorology. 

The origin of the secondary flow may be understood as follows. Fluid 

particles near the plane lose their circulatory velocity, and the centri- 

fugal-force field consequently disappears at the plane. As a consequence 

of the predominant action of the pressure field near the plane, a flow 

arises in the direction of pressure drop, that is, toward the axis of 

the vortex, and with a velocity that is determined by the appearance of 

a shear force that compensates the loss in centrifugal force. As a result 

of continuity, fluid particles must acquire a motion along the axis away 

from the plane. An analogous picture of secondary flow arises also for a 

fluid rotating at infinity like a solid body [ 1 1. 

1. Mathematical formulation of the problem and reduction of 
equations. Assuming the fluid incompressible and the motion steady and 

913 
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axisymnetric, we obtain the Navier-Stokes equations in a cylindrical co- 

ordinate system 

8% au, vq-+v’~=-~q-v L&& 
P ar ( avz + aG2) 

The boundary conditions are 

v, = v, = v, = 0 at z=O 

C 2 b= ~ 9 
P=-P,_P$ at ~~03 

the fluid is at rest at infinity, that is 

v~=vW=vz=o, P-Pm at r=oo 

and at F = 0 the component tr is finite and vr = 0 (the condition that 

neither sources nor sinks ezst). 

We introduce the dimensionless functions 

*VP 
u=-, co @A$, w = “2 r2 (P - Pm) 

co ’ iT= 

0 PCo2 

Then the system (1.1) transforms to 

uT2+Wg!!=-f++ g- 
0 ( ;g+>+g 

The corresponding boundary conditions take the form 

(1.2) 

We seek a solution of the system (1.2) having the following properties: 

(a) The functions u, @, w, n should be continuous in the entire closed 

half-space except, perhaps, the origin of coordinates and the “point” 

u=4>=w=o 

@ = 1, fi=_+ 

u=w=o 

at z=O 

at Z=W 

at r=O 
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with coordinates r = OQ, z = m. 

(b) As the boundaries of the half-space are approached, these func- 

tions should tend to the limits determined by the boundary conditions. 

'lhe dimensionless dependent variables u, Cp, w, R should be functions 

of all possible dimensionless combinations formed from the quantities r, 

z, v and Co. From these four quantities it is possible to form tm and 

only tw independent dimensionless combinations 

'Ihe quantity l/k plays the role of a Reynolds number. It can there- 

fore be asserted that any of the functions u, @, w and IT cannot depend 

on r and z separately, but only on the single combination 9. The number 

k plays the role of a parameter. 'lhus the problem posed has been reduced 
to the class of self-similar problems 12 I. 

We introduce 7 into the system (1.2), bearing in mind that 

a s d a 1 d aa z= da 2.2 d a2 1 d” zr= --- -- 
9 dq’ a2 -= r dvj’ 

-- 
8? = ra dy2 + -- 

radq ’ ~2=y@ 

lhen we obtain the equations 

u‘ (w - VI - u2 - a2 = qn' + 2n + k [(I + q2)u” + 3~ln'l (1.3) 

W(w - qu) = k [(I + q2) (3” + 3~9'1 (1.4) 

WI (w - qu) = -a' + k [(I + q2)w” + 34 + WI (1.5) 

w' = llu' (1.6) 

In transforming the boundary conditions we note that by the introduc- 

tion of the single variable 7 the points (m, z) and (r, 0) coalesce into 

the single point 7 = 0, and the points (0, z) and (r, ==) coalesce into 

the point q = bo. (Here the argument 7 is indeteninate at the points (0, 

0) and (m ,=).I Consequently 

u=o=w200 atq=U (1.7) 

u=w=o, CD = 1, fix-5 atq=oo (1.3) 

We observe a certain relation between the functions u and w that is 

indispensable for what follows. It can be shown that 

so that 
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Because according to the condition (1.71, u = 0 at r = m for all 

sfm, it follows that 

lim*=limrja’=~~s’~=O, at w’(O)=0 
v-+0+ ?j+o 

(1.10) 

zroo 

We obtain from (1.5) the indefinite integral with respect to q~ 

TC= -w(w- ~1 + k [(I + qs) w’ + qwl + CI (1.11) 

For the dete~ination of C, we take q + (D . Y&en in view of (1.7) and 
(1.9) the first term of (1.11) vanishes; we calculate 

M = lim (~~70 + qw) = lim q (yw) = lim (IT - Cr) = - $ - Cr 
w m 1)+m 

so that the limit sought exists. We consider the limit 

L.= lirnx 
,c0’n~ 

for the calculation of which it is possible to apply L’bbpital’s rule*; 
since the limit of the ratio of derivatives 

Lim (nw) 7 = l~~(~~)’ = M 
q.MO(~n?) - 

exists under these conditions, it follows that L = M. On the other hand 

L=lim: 
I 

limlnq= 0 
r+o 0 z-PC0 

(1.12) 

since vz is bounded at r = 0. ‘Ibus M = 0 and C, = - l/Z. 

We introduce a new variable and a new function 

Then proceeding from (1.6) it is not difficult to obtain 

u = -(I - 9) y’ - xy, ZfJ = Jo - 39 (y - xy’) (1.14) 

* For ‘the conditions of applicability of L’Hopital’s rule see, for ex- 
ample, [ 3 1. Attention should be drawn to the comment on page 321. 
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where primes denote differentiation with respect to x. 

If (1.11) is substituted into (1.31, Equations (l.3) and (l.4) can be 
transformed into the form 

The 

The 
second 
(1.14) 
(1.8). 

-k (1 - .y ym = 1 - cp 1 - +Y (yS) - 2 (Y”)’ + y2 (1.15) 

.Y@' = k (1 - x”) 0” (1.16) 

boundary conditions are 

Y (0) = 6, Y (1) = 6, y' (0) = 0 (1.17) 

Q, (0) = 0, @ (1) = 1 (1.18) 

first of conditions (1. l?) follows from (1.13) and (1.7), the 
from (1.13) and (1,9), and the third from the first equation 
together with (1.7); the conditions (l.18) follow from (1.7) and 

These conditions are just sufficient, because the system (1.15)-(1.16) 
is equivalent to one fifth-order equation. 

Differentiating Equation (1.15) gives 

-k (1 - 9)” yIV + 4kx (1 - x2) y”’ = - Z(DW -v (ye)” (1.19) 

Of 

-k(i - x3) ylV + 4kxy” = - 2 iES - - f (Y2)m (1.20) 

We integrate (1.19) by parts 

- k(1 - x2)y”’ + 2kxy”- 2ky’ = - 2 
x (D(P' 
s 
~--&z-- +(y")" + C, (1.20) 

0 

We then integrate (1.20) twice 

Now setting x = 0 we find, by virtue of the conditions y(O) = 0 and 
y'(O) = 0, that C, = 0. 

lhe constant C, is *superfluous*, since it originates from the fact 
that the order of Equation (l.15) was increased by differentiation. To 
determine Cz we compare (1.15) and (1.20) at x = 0. In so doing it is 
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necessary to take into account the fact that xy"= 0 at n = 0, which is 
easily seen by differentiating the second equation (1.14) and using 
(1.10). 

Setting x = 0 in (1.15) and (1.X)), we find 

--kg” (0) = I- $- y2” (0), -kg”’ (0) = -$y” (0) + c2 

Conparing these expressions we obtain Cz = 1. Consequently, (1.21) 
can be written in the form 

To determine the constant C we use the second condition (l.l?), which 
gives F(1) = 0. 'Ihus reverting to the variable v and Equation (1.13) we 
find 

(1 - 52) 24 = --u-~~-(w-Yp) 

Hence in virtue of (1.8) and (1.9) we have that (l- x2)y' + 0 as 
q + 00 (X + 1). 

Integrating (1.16) we obtain in succession 

'Ibe constant a should be determined from the last of conditions (1.18), 
We note that a = Q'(O), Further, let 

y = 2k (1 - 2”) S (1.24) 

Then from (l.22) and (1.23) we have 

.s F 64 = 52 -/- 
4p (I- xy ’ 

U'=a5[~42Sc+x (1.25) 

0 0 

Here 

(1.26) 

where the last condition follows from (1.17). 
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2. Analysis of the equations. In what follows particular signi- 
ficance is attached to the sign of the function 

F(x)=4[dx ~dz~p$dx-x2+Cx (2.1) 
0 0 0 

The function y(x) is continuous in the entire closed interval (0, I). 

Therefore according to (1.23) Q'(x) is continuous in the interval 

0 <x < 1. Also, Cp' cannot change sign. Consequently the function Q(x) 

is monotonic. Wit since Q(O) = 0 

cf, (x)\(l 

We transform (2.1), using the 

integral into a single integral, 

and-@(l) = 1; 

for O<z<1 (2.2) 

formula for transformation of a multiple 

giving 

or 

yx ty 
F(x)=2 \&QfDfdt-x2+Cx 

6 

z (z- t)(l- tr) 
F(2) = 2 \ (1_ tz)z Q2dt - 22 + cx 

0 

(2.3) 

Determining C from the condition F(1) = 0, we find 

P(r)=x-x2-2(lr)aj&cdt-L’x j$$ (2.4) 

'lhe last two terms in (2.4) are strictly negative; hence if the func- 

tion @ is replaced in (2.4) by its upper limit Cp = 1, the right-hand 

side of (2.4) is not thereby increased, that is 

F(x)>s- x2 - 2(1 -x)" i(++ (2.5) 
Ii z 

Thus F(x) > 0 for 0 6 x 6 1; considering (2.5) it follows from (l.251, 

on the basis of Chaplygin's theorem on differential inequalities [4 I, 

that S > 0, and consequently also y > 0. 

Since cp' s 0, it follows from (1.16) that also @"a 0. 

The results obtained permit establishing the inequality 

4, (2) \< x for ogx,<i (2.6) 

In fact, (2.6) is equivalent to the inequality 
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H (z) = CD (z) - 5 < 0 

‘Ihe function H(x) has a continuous derivative and vanishes at the 
points x = 0 and x = 1; consequently, according to Rolle’s theorem, it 
has at least one extremum in the interval 0 < x < 1. lhe condition 
@“> 0 establishes that there is only one such extremum, because between 
two extrema there must be an inflection point, which is excluded by the 
condition @“> 0. Furthermore the condition W’S 0 also shows that H(x) 
has a minimum. lkt. a function having a single minimum in the interval 

CO, 11 and vanishing at the end points is necessarily negative, which 
also proves the inequality (2.6). 

From the inequality (2.6) follows in an obvious fashion the first 
paradoxical result 

a< 1 for arbitrary k (2.7) 

which contradicts the ideas of boundary-layer theory, according to which 

a * l/dk so that as k + 0 the quantity a should increase without limit 
(see [5 I , where a problem analogous to that considered here is solved 
by Pohlhausen’s method). 

Ihe inequality (2.6) permits the inequality (2.5) to be made more 

precise. Replacing the function Q(t) by t in (2.4)) we obtain the in- 
equality 

F (2)>(4 In 2 - 2) II: + 2 Ic2 - (1 - S)” In (1 - 5) - (1 + z)” In (1 + z) 

= FI (z) (2.8) 

The function (2.8) is inconvenient for what follows; we therefore 
introduce 

Fz (XT) = f x (1 - z2)2 (2.9) 

It can be shown that F,(X) > F2 (x) in the interval 0 < x < 1 (this 
follows graphically from Fig. 1). But, as is easily seen 

Iim ‘!XY? = () 
r+i Fled 

Therefore the inequality F,(n) < F,(r) is satisfied everywhere on the 
interval [ 0, 1 I , or taking (2.8) into account 

F (x)>Fz (z) for O<z<l (2.10) 

We consider the equation 
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The solution of (2.11) satisfying the condition 7 (0) - 0 has the form 

(2.12) 

C&paring (2.11) with (1.251, in virtue of the inequality (2.10) we 
conclude on the basis of Chaplygin’s theorem on differential inequalities 

that 

S (g)>, IJ (2) for O<x<l (2.13) 

But the inequality (2.13) cannot be 
satisfied for arbitrary values of the para- 
meter k. Indeed, (2.12) represents a mero- 
morphic function having poles at the points 

Ic, = (3~~~~~~ (2.14) 
5 

where p are the roots of the equation 
Fig. 1. J _1/3(pn)= 0. Since S(x) is a continuous 

function in the interval [ 0, 1 1 it is 
necessary, in order for the inequality to be satisfied, to require in any 
case that the first pole of the function (2.12) lie outside the interval 
[ 0, 11 , that is 

1 1 
XI>~, or k>----c-- 

3V& * 
(2.15) 

If the condition (2.15) is not satisfied, S(z) csnnot be a continuous 
function in the whole interval IO, 1 I . Thus a second paradoxical result 
is found: for Reynolds numbers greater than 8 the problem posed does not 
have a bounded solution. 

3. Proof of existence and uniqueness of solution for small 
Reynolds nutnber. We prove that if l/k < 4.80% then: (a) under the 
condition y(O) = 0 the system of equations (1.22) and (1.23) has a solu- 
tion that is unique and continuous in the interval CO,1 1; (b) as x + 1 
the function y(x) has a limit equal to zero; (c) all the initial condi- 
tions for the functions vr, v , 
the system of equations (1.25f 

V~ and p are satisfied. We will solve 
and (2.4) by the method of successive 

~p~~mations based on the following scheme: 

(3.1) 
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(3.2) 

(3.3) 

We have 

J-1 = (4 In 2 - 2) 2 + 2x2 - (1 - z)” In (1 - z) - (1 -i_ r)” In (1 + 2) 

sl=&$-x ++-In(l+1-)-~ln2--~~ln~+ 

+L1-% 2 Fr ln(1 - k)] 

As is evident, Sl(x) is a continuous function in the entire interval 
LO,1 I, with S,(l) = (1 - In 2)/4Jz2. ‘Ihus all functions in the first 
approximation are continuous for 0 4 x Q 1. Let us assume that the func- 

tions S,,_ 1, F,,_ l9 @a_ 1 also possess this same property. We prove that 

S,,, F,,, a,, are then also continuous in the interval LO, 1 1. 

The continuity of @,(.z) and 0,‘~~) follows immediately from (3.1), 

with Q,(n) Q 1 and @,‘(x> Q A!,,, where M,, is the maximum value of the 
positive function Qn (x ). 

From (3.2) we have F,(l) = 0. We compute F,‘(l). 

F~‘(1)=-1+4lirn[(l-r)l~]~-l+~~2(1)=0 
X-+1 

0 

because On(l) = 1. Using (2.1) we find 

* DnfDn’ 
F,“=4 -dx-2 

s 
0 

Substituting here the estimates obtained for @,, and 0, we obtain 

F,” < 2&f, In ‘p - 2 
X 

Integrating this inequality twice between the limits x and 1, we find 

F, (5) < 21%1,~ {q 11 - 2 In (1 - XC)] $ 1 - 2~ In 2 + 
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+ (1 +e --[2In(l+z)-ll}-((1-2)2=2M,{~[1-2ln(l-s)]+ 4 

+ q@- (1 - z”) - & (1 - x3)- . . .} - (1 -z)” (3.4) 

Hence 

F,(r)<M,(l- x~)~[~+J -ln(l -z)] (3.4) 

In virtue of the fact that@,,(z) < 1, it follows from (3.2) that 

F,(n) > 0. 

Substituting the estimates obtained for F,(n) into (3.3), we find 

that S,(x) is continuous everywhere in the interval [O,lI, since accord- 

ing to (3.4) the expression F,(x>A4 k*( l- z* )*I has an integrable 
singularity at the point n = l.Hence by the method of induction we have 

proved the continuity of all approximations in the interval [O,l 1. We 

prove their convergence under the condition l/k < 4.8096. 

In virtues of the facts that S, = 0 and F,(x) > 0 we conclude from 

(3.3) that 

Sl>SO = 0 (3.5) 

We show that if S, > S,_ 1 then a,,+ 1 < @a. We consider the differ- 

ence 

Here and henceforth we introduce the notation 

Yn(z)= \~J+~(x)&, Gn(z) = expi 2S,dx 
” 0 

In virtue of the inequality Sn> S,_ 1 we can write 

St% = Sri-1 + 6 (x) 

where 6(x) > 0. In this case 

(l),, = esp \ 2Sdx esp [ 2S,_,dx = cp (x) +n_1 
0 0 

where the functions C+(X) and $a_ 1 are continuous and positive, and more- 

over the function C+(X) is non-decreasing, since 



924 Y.A. Co1 ‘dshtik 

x 

rp’ (xf = 26 exp 2Etdx > 0 
5 
0 

On the basis of the theorem of the mean we have 
z x 

Gnsidering this we find 

(3.6) 

(3.7) 

We prove that 8, < 8,. Assuming that 8 = 0(x), we differentiate (3.6) 
with respect to x. k have 

In view of the fact that #(x) p c$(@) and d+/di?> 0, we conclude that 
d 8 /dx > 0; since x < 1, this proves that 8 6 8,, from which &?l ) < 

$(e,), and consequently also, according to t 3.7), 

Using the estimate (3.8) 

Proceeding from (3.5) we 

0 n+1 Q @n (3.8) 

we obtain, according to (3.2), 

Fn+& J-n (3.9) 

find successively Qz 6 a,, F2 2 F,, and 
We assume that Sn > S,,_ 1; then (3.8) and according to (3.3) S2 > 5,. 

(3.9) are valid, Using (3.3) we form the difference 

S,.+il - S, = i [(S; - S:_,) + Ii’m - Fn ] dx >, 0, 
4k2 (1 - xzyL &-I > J.%t 

0 

Thus it is proved by the method of induction that all the successive 
approximations form the sequences 

But according 
functions (3.10) 

a>cb>...>@,>... (3.10) 

0 < Fl< Fz < . . . < Fn < . . . (3.11) 

0 < Sl < s2 6 . . . <ss,,<. . . (3.12) 

to (3.1) the function Q,, > 0. Iherefore the sequence of 
has a limit 

0 (x) =-lim CT& (5) as s--+ X) (3.13) 
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Again by virtue of the inequality an > 0 we conclude from (3.2) that 

F,,< x - x2\< y (1 - 3) (3.14) 

‘Ibe bound (3.14) means that the sequence (3.11) also has a limit 

F (x) = lim F, (x). as n--too (3.15) 

Substituting (3.14) into (3.3) we obtain 

(3.16) 

We consider the equation 

0’ = aa+ 
1 

16ka (1 - z) ’ 
a (0) = 0 (3.17) 

Solving (3.17) by the method of successive approximations, we obtain 

3 

uo=o, a,= S[ u:-1 + 1 
16k.L (1 - 2) 3 dx 

0 

We subtract from the inequality (3.16) the equality (3.18) 

s, -a, \( 5 (S2n-1 - a2n-1)da: 

We have 
0 

Sl --o,\<o, S,-~2<~(Si2-u12)dx,10 etc. 

0 

(3.18) 

(3.19) 

It is easy to see that in general S,, < on, and also 

EW. according to Picard’s theorem uTn converges in a certain interval 
I to the exact solution (I, which is easily found by solving (3.17): 

V 
u = 2t 

Jo (q -- Yo (t) Jo (6) I Yo (4 
II (t) - Y1 (t) Jo (b) / yd (b) 

(3.20) 

Noting that as n varies in the interval [ 0,l I the variable t varies 
between the limits 0 < t < b, we find the roots of the denominator of 
(3. ‘ZOO), that is, we solve the equation 

Jl (t) Jo @I _.-__ = __ 
Yl(l) YOM 

(3.21) 

We solve (3.21) graphically. Figure 2 shows graphs of the functions 
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J,(t)/Y,(t) and J,(t)/Y,(t). To determine the first root of bation 

(3.21) we proceed as follows. We take the point t = b and find the value 

~~~~~/Y~(~)‘ Ih en we draw a horizontal line corresponding to this value 

to its intersection with the curve J,(t)/Y,(t). 'Ihe abscissa of the point 

of intersection gives the desired root t,. From examination of Fig. 2 it 

is not difficult to convince oneself that if b < A,, where A, is the 

first root of the equation J,(A) = 0, then the root tl, lies outside the 

interval [O, bl. tinsequently, for 

b = &- < hl = 2.4048 (3.22) 

Equation (3.31) has no root in the interval [O,l 1. 

This shows that under the condition (3.22) the function (3.20) has no 

singularities in the open interval 0 Q n < 1. We investigate the be- 

havior of this function in the neighborhood of the point x = 1 (t = 0). 
Using for the functions Y,,(t) and Y,(t) the representations 

Y,(t)-+ln~, Y,(I)--$f as t-0 

we find that as t + 0 

a------ 
1/G 

y In + = -&In 2k (3.23) 

Thus under condition (3.22) the function u(x) is continuous in the 

interval [O,l I and has a logarithmic singularity at the point x = 1. 

This result allows the assertion 

that the interval of convergence I 
of the successive approximations 

on can be extended up to the point 
1 - t, where 0 < c < 1. Consider- 

ing this we find 

Fig. 2. 

oGL<o,\<o 

for O<x<l---E (3.24) 

The non-decreasing sequence 

(3.12) is bounded from above. This 

means that there exists 

S (2) = lim S, (x) 
n-too 

for O<x<l-8 

We consider the question of the behavior of the function S in the 

neighborhood of the point x = 1. From (3.23) we find that the expression 
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should be bounded everywhere, that is 

ST+.., (z) < fs (z) f A [1 - In (1 - s)l (3.25) 

Differentiating 

we find that W&z) 

there exists a lim 

(3.3) we obtain 

(3.11, substituting (3.25) into it, and letting n + m, 

is bounded in the entire interval [O,lI ; that is, 

Mn= M for n+ 00. Substituting (3.25) and (3.4) into 

x 

s, < 
\I 

A"[l-ln(1 --z)]~ + $[,+,1n2- ln(l-z)]}& (3.26) 

0 

Letting n + m we find that the right side of (3.26) is bounded as 

x + 1. Hence it follows that the function S(x) is continuous in the 

entire interval [O,l I. Thus it is proved that the successive approxima- 

tions converge if 

+< 4.8096 (3.27) 

Furthermore, it is not difficult to see that the limiting functions 

S(x), F(x) and@(n) satisfy the system of equations (1.251, (2.4) and 

the conditions (1.26). 'lhe solution obtained is unique. Indeed, the func- 

tion F in (I.251 is represented analytically through S, because the right 
side of (1.25) satisfies a Lipschitz condition in the interval [O,l 1. 
Ibis guarantees the uniqueness of the solution. 

It remains to show that the solution found satisfies (l.17) and also 

very strong conditions of boundedness on uz and vr = 0 at r = 0. 

From the preceding, S(1) = N is bounded, and in conformity with (l.24) 

Y - 2kN (1 - x2), y' - -4kN as x--t1 

Hence it is evident that (1.17) is satisfied. Using (l.14) we obtain 

r%- r2 
r~=~-- 2kN- 

II rz+zz 
r-+0 

w,$_ ___- ( ) ZJO, 
0 4kQ& 

which also gives a useful result. Finally, using (1.11) and (1.12) it is 

easy to find that lim R = - l/2 as 3 + m. 

‘Ihus is proved: for Reynolds numbers less than 4.8096 the problem 

posed has a solution that is unique and continuous everywhere except at 

the origin of coordinates; for,Reynold s numbers greater than 8 a bounded 

solution of the problem does not exist. 
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Fig. 3. 

4. Approximate 
Reynolds number. 

solution of the problem for very small 
If k + 00, then Q(n) + x according to (l.23). Thus 

(aiT) = n for very large k; 
S-=S2 fork= 

then F(x) = F,(x) (2.81. According to (I.251 

00; this together with the condition S(O) = 0 gives S f 0, 
and means also that y = 0. Let k f 00, but sufficiently large that the 
term y 2 in Equation (1.22) can be neglected. Then 

2k (1 - x2) y’ f 4kxy = (41n2 - 2) r A- 2x2 - (1 - z)” In (1 - CC) - 

- (1 + CZ)~ In (1 + 2) (4.1) 

The solution of (4.1) with the condition y(O) = 0 has the form 

r 

y = & 1 z + (2 In 2 - 1) x2 - v In 2 - x In (1 - x2) 
I (4.2) L 

Thus y - k-‘, and in the left side of (1.221 we have neglected a teti 

of 0(kw2) in comparison with terms of O(1). We introduce into considera- 

tion the stream function in the meridional section 

P P co 

Y = & 1 rvzdr = k i wdr = kz \ 

0 0 

w$=kr(w-qu)==kI/r2+z2y=kRy 

rl 

Y= $[x+(21n2-l) x In (1 - z2) 
I (4.3) 

Bearing in mind that n = cos 0, where 8 is the angle measured in the 

meridional plane from the positive Z-axis, and using (4.31, it is easy 

to construct the streamlines, shown in Fig. 3 for equally-spaced values 

of I: 0.1, 0.2, . . . 1. As is evident, the character of the secondary 

flow corresponds to the ideas given in the introduction. 
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